create_ranges_multiple.Rd
Takes in the input of create_error_df_redox_multiple and creates a simple ranges plot: e.g. minimum and maximum measureable value at different error thresholds for each sensor.
create_ranges_multiple( error_df, thresholds = c(0.5, 1, 1.5, 2, 2.5), parameter = "E" )
error_df | A dataframe of errors at least these columns: 'Name': this sensor name 'E': the redox potential (mV), 'Error': the error in this redox potential (mV) 'Inaccuracy': The inaccuracy of the measurements (relative to R). |
---|---|
thresholds | A vector of error thresholds (e.g. c(0.5, 1) for 0.5mV and 1mV) |
parameter | the biochemical value being measured |
A dataframe of suited ranges with these columns: 'Sensor_Name': the name of the sensor 'Minimum': the minimum redox potential (mV) measurable at the given inaccuracy 'Maximum': the maximum redox potential (mV) measurable at the given inaccuracy 'Inaccuracy': the inaccuracy associated with this row (relative) 'error_thresh': the error threshold associated with this row (mV)
error_df <- create_error_df_redox_multiple( c(0.02), -400, -200, data.frame( Rmin = 0.97, Rmax = 4.12, delta = 0.23, name = "roGFP2", e0 = -299 ) ) create_ranges_multiple(error_df)#> Sensor_Name Minimum Maximum Inaccuracy error_thresh #> 1 roGFP2_0.02 NA NA 0.02 0.5 #> 2 roGFP2_0.02 -304.11 -274.38 0.02 1.0 #> 3 roGFP2_0.02 -312.56 -266.09 0.02 1.5 #> 4 roGFP2_0.02 -317.29 -261.39 0.02 2.0 #> 5 roGFP2_0.02 -320.59 -258.11 0.02 2.5